博客
关于我
彻底解决python打印结果省略号的问题显示宽度
阅读量:432 次
发布时间:2019-03-06

本文共 665 字,大约阅读时间需要 2 分钟。

pandas是python中非常强大的数据分析工具,但在实际操作中,数据框的显示可能会因为列数或行数过多而出现省略号,导致我们无法清晰看到数据的大致分布情况。了解数据的分布范围对于后续的可视化和分析工作至关重要。为了解决这个问题,我们可以通过pandas内置的设置选项来调整显示的数目和宽度。

在pandas中,通过set_option()方法可以灵活配置显示选项。具体来说,主要涉及以下几个参数:display.max_columns、display.max_rows、display.max_colwidth和display.line_width。通过适当调整这些参数的值,我们可以让数据框在显示时能够完整呈现,避免信息被遮挡。

以下是一些常用的设置示例:

import pandas as pd
pd.set_option('display.max_columns', 1000)
pd.set_option('display.width', 1000)
pd.set_option('display.max_colwidth', 1000)

通过以上代码,我们可以将max_columns设置为1000列,这意味着数据框在显示时可以展示更多的列信息。同时,将max_width和max_colwidth也设置为1000,可以让每一列的数据在展示时不受宽度限制,从而避免数据被截断。

这些设置将使pandas在打印数据时能够更全面地展示数据框的内容,有助于我们更好地理解数据的分布情况,为后续的数据可视化和分析打下坚实基础。

转载地址:http://flwyz.baihongyu.com/

你可能感兴趣的文章
null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
查看>>
Number Sequence(kmp算法)
查看>>
Numix Core 开源项目教程
查看>>
numpy
查看>>
NumPy 库详细介绍-ChatGPT4o作答
查看>>
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
numpy.linalg.norm(求范数)
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>
numpy中的argsort的用法
查看>>